OPTIMAL ESTIMATES IN THERMAL MEASUREMENTS

D. F. Simbirskii UDC 536.2.083

Presented is an analysis of the use of a Kalman filter to improve the accuracy of thermal-
measurement systems and to increase the information which can be obtained from them.

Thermal measurements include determinations of both (a) the temperatures of solid and gaseous
media and (b) thermal properties which by their nature are only indirectly related to temperatures, e.g.,
heat fluxes, radiation fluxes, thermophysical characteristics of materials, surface heat-transfer char-
acteristics, etc. In both cases the measured properties are found (calculated) from the directly detected
temperatures of temperature pickups in the media under study. The information about these media in-
cludes, inaddition to the useful signal, random errors or noise. Problems of this type are extremely
complicated, falling in the class of "incorrectly formulated inverse problems" {1]. There are essentially
no structural methods for solving incorrectly formulated inverse problems for applications to thermal
measurements; as a result, there is room for a general improvement in the accuracy and information
content of most thermal-measurement systems.

In the present paper we propose the use in this connection of certain cybernetic methods, in parti-
cular, optimal estimates and identification through the use of a numerical Kalman filter. These methods
are based on an analysis of the dynamics of the thermal-measurement system in its state space [3].

1. Mathematical Model of the System

The'dynamics of a thermal-measurement system, which usually includes one or several tempera-
ture pickups, is described by actual differential equations and is represented as the temperature field in
some multiply connected region. It has been shown [4] that at each time 7 this field can be represented by
the temperatures of a finite number of points N, which form a state vector of the system:

3 i 7
X ={xx ... % ... %8l .

Its values at successive discrete times k+A7 and (k + 1)Ar are related by [3, 6]
X (T)=t=(k+*l)A'c = (I)k+1,k'7<(r)|-r=k-m-- (1)

The set of vectors §(T) forms the state space of the system, The dynamics of the system can be
described approximately by N first-order ordinary differential equations in the components xj of the state
vector. In vector-matrix form, these equations can be written -

dX (@)
dt .
- In the more general case in which the thermophysical characteristics of the material depend on the
temperature and in the case of nonlinear boundary conditions the system is described by the nonlinear
equation

—X@=FOX@-60-Ta. @)

X = &, 50, U, . ®)

Estimates of the error of a differential-difference aﬁproximation of this type can be found in papers
on the finite-difference methods for solving boundary-value problems, in particular, by the straight-line
method [5]. Some practical examples of this method and the reasoning behind it are given in [4].
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Equations (2) or (3), which depend on the nature of the measurements in some manner, incorporate
the measured thermal properties. For example, the temperatures of a solid are usually the components
of the state vector §(T). The temperature of a gaseous medium flowing around the thermal-measurement
system is part of the control agent E(r). The surface heat-transfer coefficient F(r) appears in both the
control agent and the feedback matrix F(r), while the thermophysical characteristics of the material
appear in the feedback matrix, etc.

Describing the system in this manner, we can analyze its behavior (reaction) upon changes in the
unknown thermal properties; in other words, we can solve the direct heat-conduction problem. It is ex-
tremely convenient to follow this approach in the state space of the system, based on a calculation of the
transfer matrix ®k +4 k from the feedback matrix F(r). If @k is known, we can find a solution in the
temporal region in accordance with Eq. (1), This approach permits us to treat both steady-state and
transient systems for arbitrary (not necessarily vanishing) initial conditions, Furthermore, it is possible
to carry out a more general analysis of the system: its controllability, the observability, the choice of an
optimum dimensionality for the model, etc. [2,4].

However, we are primarily interested in the possibility of applying to such a system the methods of
optimal filtering, estimates, and identification for solving the inverse problem,

In this case we must supplement the basic equation for the system, (2) or (3), with the following
equation for the observation vector:

Y @) =H,0- X6+ V. (4)

The components of yj (i =1, 2, ..., N) of the observation vector are the measurements (observa-

tions) of the components xj of the state vector. Here _Y-:(T) usually directly incorporates the recorded indi-
cat1ons of the thermal pickups (thermocouples or resistance thermometers) in the system. The noise vec-

tor W( ), which is unavoidably present in the measurements, is assumed to be white Gaussian noise with
a zero expected value, E[W(r)] = 0, and a covariance matrix

cov W (¥) - W)l = E[W () - W’ (¥)] = N = diag n,n, ... ny.

2. Optlmal Est1mates and Ident1f1cat10n

The mathematical model of the system can thus be described by Egs. (2) and (4).

As was mentioned above, among the components of the state vector, parameters, or control agents
are unknown thermal properties which must be determined from the values of the observation vector Y

=Y(r)ir =k A r» usually specified at discrete times.

In the terminology of general systems theory this problem can be solved only through an optimal
estimate of the state vector, in the case in which the measured property is a component of this vector, or
through identification, in which case the measured property is included in the feedback matrix or in the
control agent of the system.

In the former case, direct use can be made of the (discrete) numerical algorithm of optimal sequen-
tial filtering proposed by Kalman [6]. In the latter case, which is more common, it is first necessary to
expand the state vector of the system by incorporating in it the measured properties. We will discuss
this formal operation in more detail and show that it is feasible in many cases of practical importance,

For example, when the property to be identified, o jo is constant (@; = const), an additional compo-
nent Xj = Qj is incorporated in the state vector, and we supplement system (2) or (3) with the equation

%= 0. (5)

If the property to be identified is a linear function of the time, aj = ay + a7, then by denoting Xj
= aj and Xj41 = Qy and carrying out two successive differentiations of xj we find an additional system of
two equatmns

';Ci = Xj41, 6)

- )éj_;_l == O.
When system (2) or (3) is supplemented with Egs. (6), the state vector expands by two components, Xj
and Xj+1. Inthis manner we can describe unknown properties having various time dependences: expo-
nential, sinusoidal, polynomial, and various combinations thereof [7].



If the properties to be identified are included in the matrix F(r) as well as in the input-agent vector,
as is the case for the heat-transfer coefficients and the thermophysical characteristics of the material,
the expanded system becomes nonlinear and can be written

R = f (_é (o,

;,h = Hﬁk - “;hL
where -
I }
- XA
Rp=1, . M
Lo

i

The unknown-property vector E(T) is of dimensionality m x 1,

Now the expanded state vector E{T) of dimensionality (N + m) X 1 of nonlinear system (7) can be sub-
jﬁcted to a sequential optimal estimate. System (7) is usually linearized along some reference trajectory
R*(r); the reference trajectory itself is also estimated sequentially.

The algorithm of the discrete linear Kalman filter is applied to the linearized system, written in
discrete form., This algorithm consists of the following sequence of operations on the vectors and matrices

{61:

§k+1gk+1 = §k+l;k = Ky [}—;k-;-l — H—jék—{—lik], v (8)
ﬁl:-}-l‘k = (D:;+1,k‘§k,vk, 9)

Kyt = ProapH" [HPyoiwH™ -- N1, (10)
Priyw = q)k+l.kpk'k®g+l.k1 ' (11)

Py = Pk-}-ljkr“.‘ _Kk-f—lHPk-!—l}k: o (12)

where

(Ary?

(Dk+l,k zeprkH'At =] Fk.}.l-AT -1 F}E.{.;

Foy o HRE |

H=E
OR (1) (Riny=Ry

= A
Ry =R* (Q)lr—t. A~
The quadratic feedback matrix Fy 44 of the linearized system is of dimensionality N + m. The equations

for its elements include estimates of the state vector _)Ek ik and the vector of unknowns Ee'k k obtained at
the preceding time.

It follows from this algorithm that the new expanded state vector ﬁ;(.,_l Ik +1 is equal to [Eq. (8)] to
the sum of its prediction ﬁkﬂ Ik» extrapolated through Eq. (9) for the dynamics of the system on the basis

of the "old" estimate ﬁklk and the weighted difference between the real measurement, ?k +1» and the pre-
diction of this measurement.

The sequential procedure for estimating the state vector fklk and identifying the vector of unknown
parameters Ek [k is as foltows.

-~

For the initial time, k = 0, we specify an initial expanded state vector ﬁosm consisting of the initial
vectors §0|0 and @,. Obviously, only those components :Ei(O) of the state vector which appear in the ob~
servation vector of the system, 370, can be written with adequate accuracy. The other components of the

state vector Xjj, and the vector of unknowns 5)010 are specified with large errors, governed by the level of
our a priori or-estimated knowledge. The dispersion corresponding to the probability of the a priori in-
formation is reflected in the choice of -elements of the covariance matrix Py, for the errors in the initial

estimates {6]. The values of Eoio and P;j, and the dispersions n; = ny = ... = ny, which are a measure of
the measurement noise, serve as the basis for the first caleculation step. Here the components ii(O) and

c‘;i(O) of the initial expanded state vector Ryj, are used to calculate the feedback matrix of the linearized
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Fig. 1, a) Construction of the heat-flux pickup; b)
model of this pickup. 1) Junction of film thermocouple;
2) film thermoelectrode; 3) thermal pickup; 4) ther-
mal insulation; 5) protective cylinder; 6) housing;

7) leads. '

system, Fy. Using the values of the ocbservation vector ?1 at our disposal along with Egs. (8)-(12), we
determine estimates of the expanded state vector K|, and the covariance matrix Py} of the errors of these

estimates. Then the procedure is repeated, with a calculation of R,y and Py, §3;3 and Pyj;, etc.

In the course of the calculations the vector of unknowns is constantly refined; at some time the esti~
mates Ek ik converge to definite values, and the corresponding diagonal matrix elements Py i become ex-
tremely small. It must be noted here that the diagonal matrix elements Py . are the dispersions which
are 2 measure of the accuracy in the estimates found for the unknowns in the k-th calculation step [6].

Accordingly, the inverse problem for a thermal-measurement system is solved through the use of
the Kalman filter in the following manner:

1) A mathematical model of the system is constructed which includes both the directly measurable
properties, as well as the thermal properties, which are to be determined.

2) In a manner governed by the nature of the measurements, the state vector of the system is ex-
panded by the quantities which are to be determined.

3) As information becomes available there is a sequential estimate of the expanded state vector of
the system and thus an identification of the unknown thermal properties.

This method has several advantages: First, the unknown thermal quantity found by solving the in-~
verse problem, so that methodological errors can be essentially eliminated (the dynamic error due to heat
transfer along the thermal pickup and so forth). Such errors usually reduce the measurement accuracy.
The transient, nonlinear systems can be treated without important simplifications, and the noise present
_in the information does not affect the accuracy of the final results, Second, if some a priori information
is available, it is possible to find all the thermal properties and the parameters which are reflected in the
mathematical model of the thermal-measurement system.

To illustrate this discussion we consider an example.

Example

We are to determine the temperature of the medium, tme, and the heat-transfer coefficient at the
surface of the pickup, «.
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Fig. 2. Practical determination of the temperature of
the medium, tpe CK), and of the heat-transfer coeffi-
cient o {W/(m?-deg)] at the end surface of the pickup.
Also shown here is the behavior of the estimates favkik
(solid curve) and &y (dashed curve) for certain ver-
sions of the initial estimates. 1) Version1; 2) version

. 3. Here Yy is the directly measured temperature of
the end of the pickup. Here 7 is in seconds.,

We use the procedure outlined above to treat the real problem of determining the flow properties of
the combustion products of kerosene from direct measurements of the temperature at the end surface of a
pickup in the flow,

The pickup (Fig. 1a) consists of a c¢ylindrical rod 4 mm in diameter and 39 mm long, enclosed in a
hollow protective cylinder, which is filled with cast alundrum. The pickup itself and the protective cylin-
der are made of type ZhS6-K alloy. On the basis of handbook data we assume that the thermal diffusivity
of the material is a linear function of the temperature, a = g + %x [¢y = 2,40 -107% m%/sec, n =4.80-107°
m?/ (sec +deg)}, and we assume cy = 3.4 -10% J/(m? -deg). The temperature of the end of the pickup is mea-
sured by a "semisynthetic" platinum surface film thermocouple, like that described in [8]. The joint of
the thermocouple — the point at which the leads (made of wire) to the film and to the pickup material are
connected — is at the thermally insulated end of the pickup, where the temperature is also monitored.

The mathematical model, in correspondence with the discussion in [4], is obtained by partitioning the
pickup into N = 7 regions or blocks (Fig. 1b). This model is described by

. ( 2a, 2 2a, LR 2 2
= - o X X - — (%3 — X
1 . ( 42 N cyd ) ol @ o ( )+ cyd

a4 2a, % _}_%

&tav,

W 9 2 92
X3+ ”2d—2(xf—2x2 -+ 1),

a 2a a % o 9 2
x; = d;’ Xi—p — dzo xi “I" d—: XL—}-I e “22;'" (xlj_] —_— 2xi + xi-}-l), (13)
. a : % o
K

_ In writing Egs. (13) we assumed that in the heat transfer from block i to block j the thermal diffusiv-
ity is that corresponding to the average block temperatures; i.e., @j-j = @y + nl{x; + Xj)/ 2].

In this case the observation vector §:k is a scalar, given by

— oy,
Y, =x @y
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We supplement the state vector X(r) of the system with the vector of quantities which are to be de-
termined: '
a = | {aly) ol

Working from the assumed constancy of the heating conditions at the end of the pickup {t5 = const,
= const), we supplement Eqs. (13) with the twoequations

(ai{av\ =0 and OL =0.

3((1:)
o (%)

—~ (9 x 1) is the expanded state vector, f is a nine~dimensional nonlinear vector function, and H = |10 ... 0]
— (1 X 9) is the observation matrix.

Accordingly, in this case we find the equation of the expanded system in form (7), where E(T) =

The expanded state vector E(T) is to be identified through sequential estimates on the basis of the
algorithm described above,

Figure 2 shows the results of a practical identification of o and tme through the use of the Kalman-
filter algorithm (8)-(12). As the initial values we specify the accurate values of the state vector Xg, of
the system, working from the essentially uniform initial temperature distribution which prevails over the
thermal pickup [x; = %3 = ... = x; = x(0)]. We assume the following combinations of arbifrarily selected
values of the unknowns o and tme: 1) o = 720 W/m?, tme = 1273°K; 2) 110, 573; 3) 110, 2273; 4) 110,
1273; 5) 720, 573; and several other combinations. In all cases the identification procedure converges
within +2% of certain values of the quantities to be identified. These values are then adopted as the actual
values: o =355 W/m? and tyme = 1010°K.

Figure 2 shows the behavior of the estimates &k ik and favklk as they approach their steady-state
(actual) values; this behavior characterizes the identification process.

Direct control measurements of tyme carried out with a Chromel—Alumel thermocouple 0.1 mm in
diameter show that the flow temperature varies from 993 to 1038°K, depending on the distance from the
end of the pickup. Since it is some average of the flow temperature over the thickness which is identified,
the results were judged favorable,

We have thus shown that the theory of optimal filtering, estimates, and identification can be used to
obtain optimal estimates of measured thermal properties. As an example we reported the practical appli-
cation of this procedure for determining the temperature of a gas flow and for determining the heat-trans~
fer coefficient along the surface of a pickup (@ wall).

NOTATION
T is the transposed vector or matrix;
AT, sec is the time step;
O +1,k is the transfer matrix of the system;
F@r)— (NXN) is the feedback matrix;
9 (r) — (N Xp) is the input-agent matrix;
Ufr) — px1) is the input-agent vector;
fy and f are the nonlinear vector functions;
_Ii(T) — (r X N) is the observation matrix;
R(r) is the expanded state vector;

1 is the unit matrix;

§k+1ik+1 and ﬁk +1lk +1 are the estimates of the state vector and expanded state vector [the double sub-
script is used to give the time for which the estimate is made (the first subscript)

. and the observation time (the second)];

Ek+1 Ik is the prediction of the expanded state vector to the time k + 1;
Ki +1 is the weight matrix of the filter;

Priiik+1 is the covariance matrix of the errors of the estimate;
Prriik: is the covariance matrix of the errors of the prediction;

G, J/(kg-deg) and

v, kg/m? are the specific heat capacity and density of the material,
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