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P r e s e n t e d  is  an ana lys i s  of the use  of a Kalman f i l te r  to improve  the accu racy  of t h e r m a l -  
m e a s u r e m e n t  s y s t e m s  and to i nc rea se  the informat ion  which can be  obtained f r o m  them. 

T h e r m a l  m e a s u r e m e n t s  include de te rmina t ions  of both (a) the t e m p e r a t u r e s  of solid and gaseous  
media  and (b) t h e r m a l  p r o p e r t i e s  which by the i r  na ture  a r e  only indirect ly  re la ted  to t e m p e r a t u r e s ,  e .g . ,  
heat  f luxes,  rad ia t ion  f luxes,  t he rm ophys i c a l  c h a r a c t e r i s t i c s  of m a t e r i a l s ,  su r f ace  h e a t - t r a n s f e r  c h a r -  
a c t e r i s t i c s ,  e tc .  In both cases  the m e a s u r e d  p rope r t i e s  a r e  found (calculated) f rom the  d i rec t ly  detected 
t e m p e r a t u r e s  of t e m p e r a t u r e  pickups in the media  under  study. The informat ion  about these  media  in- 
cludes,  in addit ion to the useful  s ignal ,  r andom e r r o r s  or noise.  P rob l ems  of this type a r e  ex t r eme ly  
compl ica ted ,  fai l ing in the Class of " inco r r ec t ly  formula ted  inve r se  p rob l ems"  [1]. The re  a r e  essen t ia l ly  
no s t r u c t u r a l  methods for solving i n c o r r e c t l y  formula ted  inverse  p r o b l e m s  for  appl icat ions to t h e r m a l  
m e a s u r e m e n t s ;  as a r esu l t ,  t he re  is r oom for  a genera l  improvemen t  in the a c c u r a c y  and informat ion  
content of mos t  t h e r m a l - m e a s u r e m e n t  s y s t e m s .  

In the p re sen t  pape r  we p ropose  the use  in this connection of ce r t a in  cyberne t ic  methods,  in p a r t i -  
cular ,  opt imal  e s t i m a t e s  and identif icat ion through the use  of a numer ica l  Kalman f i l te r .  These  methods 
a r e  based  on an ana lys i s  of the dynamics  of the t h e r m a l - m e a s u r e m e n t  s y s t e m  in its s t a t e  space  [3]. 

1 .  M a t h e m a t i c a l  M o d e l  o f  t h e  S y s t e m  

T h e d y n a m i c s  of a t h e r m a l - m e a s u r e m e n t  sy s t em,  which usually includes one or  s eve ra l  t e m p e r a -  
t u r e  pickups,  is desc r ibed  by actual  d i f ferent ia l  equations and is r e p r e s e n t e d  as the t e m p e r a t u r e  field in 
some  mult iply connected region.  It has  been  shown [4] that  at each t ime  r this field can be r ep re sen t ed  by 
the t e m p e r a t u r e s  of a finite number  of points N, which f o r m  a s ta te  vec to r  of the sy s t em:  

-~" (+) = ixlx~ . . .  x i . . .  x J .  

Its  va lues  at s u c c e s s i v e  d i s c r e t e  t imes  k - A  r and (k + 1)A r a r e  re la ted  by [3, 6] 

' 1 "  I ~ " 

The set  of vec t o r s  X(r) f o r m s  the s ta te  space  of the sys t em.  The dynamics  of the s y s t e m  can be 
desc r ibed  approx ima te ly  by N f i r s t - o r d e r  o rd inary  di f ferent ia l  equations in the components  xi of the s ta te  
vec to r .  In v e c t o r - m a t r i x  form,  these  equations can be wr i t ten  

d ~  (~) = ~ (~) = F (~) ~ (~) + ~ (~) .~  (~) (2) 
dv 

�9 In the m o r e  gene ra l  case  in which the  t he rmophys i ea l  c h a r a c t e r i s t i c s  of the m a t e r i a l  depend on the 
t e m p e r a t u r e  and in the case  of nonl inear  boundary conditions the s y s t e m  is desc r ibed  by the nonl inear  
equation :~ 

X ('0 = [~ (~7 ('0, G (-~), ~ ('0, -c). (3) 

Es t ima te s  of the e r r o r  of a d i f fe ren t i a l -d i f fe rence  approx imat ion  of this type can be found in pape r s  
on the f in i te -d i f fe rence  methods for  solving boundary-va lue  p r o b l e m s ,  in pa r t i cu la r ,  by the s t r a igh t - I ine  
method [5]. Some p rac t i ca l  examples  of this method and the reason ing  behind it a r e  given in [4]. 
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Equations (2) or (3), which depend on the nature of the measurements  in some manner,  incorpora te  
the measured  thermal  p roper t i es .  For  example, the t empera tu res  of a solid a re  usually the components 

of the state vector  X(T). The t empera tu re  of a gaseous medium flowing around the t h e r m a l - m e a s u r e m e n t  

sys tem is par t  of the control  agent U(r). The surface  hea t - t r ans f e r  coefficient F(T) appears  in both the 
control agent and the feedback matr ix  F (r), while the thermophysica l  cha rac te r i s t i c s  of the mater ia l  
appear  in the feedback matr ix,  etc. 

Descr ibing the sys t em in this manner ,  we can analyze its behavior (reaction) upon changes in the 
unknown thermal  p roper t ies ;  in other words,  we can solve the direct  heat-conduct ion problem. It is ex- 
t r eme ly  convenient to follow this approach in the state space of the sys tem,  based on a calculation of the 
t r ans f e r  mat r ix  ~k+ l ,k  f rom the feedback mat r ix  F(r).  If ~k+i ,k  is known, we can find a solution in the 
t empora l  region in accordance  with Eq. (1). This approach permi ts  us to t rea t  both s teady-s ta te  and 
t rans ient  sys tems  for a r b i t r a r y  (not necessa r i ly  vanishing) initial conditions. Fu r the rmore ,  it is possible 
to ca r ry  out a more  general  analysis  of the s y s t e m :  its controllabili ty,  the observabil i ty,  the choice of an 
optimum dimensionali ty for the model, etc. [2,4]. 

However, we a re  p r imar i ly  in teres ted  in the possibi l i ty of applying to such a sys tem the methods of 
optimal filtering, es t imates ,  and identification for solving the inverse  problem.  

In this case we must  supplement the basic  equation for the system,  (2) or (3), with the following 
equation for the observat ion vec tor :  

.+ 

(~) = H1 (T). X (~) + ~ ( ~ )  (4) 

The components of Yi (i = 1, 2 . . . . .  N) of the observat ion vector  a re  the measurements  (observa- 

tions) of the components xi of the state vec tor .  Here Y(r) usually direct ly  incorpora tes  the recorded  indi- 
cations of the thermal  pickups (thermocouples or res i s tance  the rmomete r s )  in the sys tem.  The noise vec-  

tor  w(r) ,  which is unavoidably present  in the measurements ,  is assumed to be white Gaussian noise with 

a zero  expected value, E[W(T)] = 0, and a covar iance mat r ix  

coy [W (T). ~zr(~)] = E [1~ (T). ~ r  (~)] _-- N = diag [nln ~ . . .  nNI. 

2 .  O p t i m a l  E s t i m a t e s  a n d  I d e n t i f i c a t i o n  

The mathemat ical  model of the sys t em can thus be descr ibed by Eqs. (2) and (4). 

As was mentioned above, among the components of the state vector ,  pa rame te r s ,  or control agents 
a re  unknown thermal  proper t ies  which must  be determined f rom the values of the observat ion vector  Yk 

= Y(r)i7 =kA r, usually specified at d i sc re te  t imes .  

In the terminology of general  sys tems  theory this problem can be solved only through an optimal 
es t imate  of the state vector ,  in the case in which the measured  proper ty  is a component of this vector ,  or 
through identification, in which case the measured  proper ty  is included in the feedback mat r ix  or in the 
control  agent of the sys tem.  

In the fo rmer  case, d i rec t  use can be made of the (discrete) numerical  a lgor i thm of optimal sequen- 
tial fi l tering proposed by Kalman [6]. In the lat ter  case, which is more  common, it is f i rs t  necessa ry  to 
expand the state vector  of the sys tem by incorporat ing in it the measured  proper t ies .  We will d iscuss  
this formal  operat ion in more  detail and show that it is feasible in many cases  of pract ica l  impor tance .  

For  example, when the proper ty  to be identified, ~j, is constant (~j = const), an additional compo- 
nent x] = ~j is incorporated in the state vector ,  and we supplement sys tem (2) or (3) with the equation 

xj = o. (5) 

If the property to be identified is a linear function of the time, ~] = s 0 + ~i r, then by denoting xj 
= ~j and x] +i = ~i and carrying out two successive differentiations of xj we find an additional system of 
two equations : 

xj = xj+,, (6) 

x ] + i  - O.  

When sys tem (2) or (3) is supplemented with Eqs. (6), the state vector  expands by two components,  xj 
and xj +l .  In this manner  we can descr ibe  unknown proper t ies  having various t ime dependences:  expo- 
nential, sinusoidal,  polynomial,  and various combinations thereof  [7]. 
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If the p roper t i es  to be identified a re  included in the matr ix  F(r) as well as in the input-agent vector ,  
as  is the case for the hea t - t r ans f e r  coefficients and the thermophysical  charac te r i s t i cs  of the mater ia l ,  
the expanded sys t em becomes  nonlinear and can be writ ten 

.2. 

where 

.~ (r) i 
, r~ - C7) 

The unknown-property vec tor  ~(r)  is of dimensionali ty m x 1. 

Now the expanded s ta te  vec tor  R(r) of dimensionali ty (N + m) • 1 of nonlinear sys tem (7) can be sub- 
jeeted to a sequential optimal es t imate .  System (7) is usually l inearized along some re fe rence  t r a j ec to ry  

R* (r); the re fe rence  t r a j ec to ry  i tself  is also est imated sequentially~ 

The a lgor i thm of the d i sc re te  l inear  Kalman filter is applied to the l inearized system,  written in 
d i sc re te  form.  This a lgor i thm consis ts  of the following sequence of operations on the vectors  and mat r ices  
[61: 

..% 

Rk+l,k = ~I-~+l,k- Rk~k, (9) 

K~:§ = PI~--IIkH r [HP~+,i~H r - .  N], (t0) 

Pk+r~ = ff)~.~Pr~@[+~.~, (11) 

P ~ + ~  = P~+ :~ - K~+IHP~+~I~, (12) 

where 

~k*l ,k -~ exp FI~+1 �9 A'r = I -~- Fk-~-1 �9 Ar --', F~+1 
2~ 

[R('~)=R k 

R ; = R *  ~ ' ( )i,=~ A~, 

The quadrat ic  feedback mat r ix  F k + 1 of the l inear ized sys t em is of dimensionali ty N + m. The equations 

for  its elements include es t imates  of the state vector  Xki k and the vector  of unknowns ~-~klk obtained at 
the preceding t ime.  

It follows f rom this a lgo r i t hm that the new expanded state vector  R k + l lk + 1 is equal to [Eq. (8)1 to 

the sum of its predict ion R--k+lik, extrapolated through Eq. (9) for the dynamics of the sys t em on the basis  

of the "old" es t imate  Rktk and the weighted difference between the rea l  measurement ,  Yk + l, and the p r e -  
dict ion of this measurement .  

The sequential  p rocedure  for est imating the state vector  Xkt k and identifying the vector  of unknown 

p a r a m e t e r s  ~klk is as follows. 

For  the initial t ime,  k = 0, we specify an initial expanded state vec tor  R010, consist ing of the initial 

vec to rs  Xol 0 and ~-~0t0- Obviously, only those components xi(0) of the state vector  which appear  in the ob- 

se rva t ion  v e ~ o r  of the sys tem,  Y0, can be wri t ten with adequate accuracy .  The other components of the 

state vector  X0[0 and the vector  of unknowns ~-"010 a re  specified with large  e r r o r s ,  governed by the level of 
our a p r io r i  or  e s t ima ted  knowledge. The d ispers ion  corresponding to the probabili ty of the a pr ior i  in- 
format ion  is ref lected in the choice o f  elements of the eovariance mat r ix  P010 for the e r r o r s  in the initial 

es t imates  [6]. The values of R0i 0 and P0[0 and the d ispers ions  n I = n 2 = . . .  = n N, which a re  a measure  of 
the measuremen t  noise, s e rve  as the basis  for the f i rs t  calculation step. Here the components ~i(0) and 

~i(0) of the initial expanded state vec tor  R0i0 a re  used to calculate the feedback matr ix  of the l inear ized 

166 



t 

/1 
V/1 

~ 2  

~ 3  

~ 6  

ecorder 

a b 

Fig. 1. a) Construct ion of the heat-f lux pickup; b) 
model of this pickup. 1) Junction of film thermocouple;  
2) f i lm thermoelec t rode ;  3) thermal  pickup; 4) the r -  
mal insulation; 5) protect ive  cylinder;  6) housing; 
7) leads.  

sys tem,  F t. Using the values of the observat ion vec tor  Y1 at our disposal  along with Eqs. (8)-(12), we 

determine es t imates  of the expanded state vector  R'- 111 and the eovariance m a t r i x P  1 h of the e r r o r s  of these 

es t imates .  Then the procedure  is repeated,  with a calculation of 1~212 and P212, tR-~3J3 and P3i3, etc. 

In the course  of the calculations the vec tor  of unknowns is constantly refined; at  some t ime the es t i -  

mates  ~-klk converge to definite values, and the corresponding diagonal mat r ix  elements Pktk become ex- 
t r eme ly  small .  It must  be noted here  that the diagonal mat r ix  elements Pk,k a re  the dispers ions  which 
a r e  a measure  of the accu racy  in the es t imates  found for the unknowns in the k-th ca lcu la t ions tep  [6]. 

Accordingly,  the inverse  problem for a t h e r m a l - m e a s u r e m e n t  sys t em is solved through the use of 
the Kalman fi l ter in the following manner :  

1) A mathemat ical  model of the sys tem is constructed which includes both the direct ly  measurable  
proper t ies ,  as well as the thermal  proper t ies ,  which a re  to be determined.  

2) In a manner  governed by the nature of the measurements ,  the state vector  of the sys t em is ex- 
panded by the quantities which a re  to be determined.  

3) As information becomes  available there  is a sequential es t imate  of the expanded state vector  of 
the sys tem and thus an identification of the unknown thermal  p roper t ies .  

This method has severa l  advantages:  F i rs t ,  the unknown thermal  quantity found by solving the in- 
ve r se  problem, so that methodological e r r o r s  can be essent ial ly  eliminated (the dynamic e r r o r  due to heat 
t r ans f e r  along the thermal  pickup and so forth). Such e r r o r s  usually reduce the measurement  accuracy .  
The t ransient ,  nonlinear sys tems  can be t rea ted  without important  simplifications,  and the noise present  
in the information does not affect  the accuracy  of the final resu l t s .  Second, if some a pr ior i  information 
is available,  it is possible to find all the thermal  proper t ies  and the pa rame te r s  which a re  ref lected in the 
mathematical  model of the t h e r m a l - m e a s u r e m e n t  sys tem.  

To i l lus t ra te  this d iscuss ion we consider  an example. 

E x a m p l e  

We are  to determine the t empera tu re  of the medium, tree, and the hea t - t r ans fe r  coefficient at the 
surface  of the pickup, a .  
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Fig. 2. Prac t ica l  determinat ion of the t empera tu re  of 
the medium, tme (~ and of the hea t - t r ans fe r  coeffi-  
cient ~ [W/(m 2 -deg)] at  the end sur face  of the pickup. 
Also shown here  is the behavior  of the es t imates  t'avkl k 
(solid curve) and 6kik (dashed curve) for cer ta in  v e r -  
sions of the initial es t imates .  1) Vers ion 1; 2) vers ion  
3. Here Ylk is the direct ly  measured  t empera tu re  of 
the end of the pickup. Here T is in seconds.  

We use the p rocedure  outlined above to t rea t  the real  p rob l em of determining the flow proper t ies  of 
the combustion products  of kerosene  f rom direct  measurements  of the tempera ture  at the end sur face  of a 
pickup in the flow. 

The pickuP (Fig. la) consis ts  of a cyl indrical  rod 4 mm in d iameter  and  39 mm long, enclosed in a 
hollow protect ive  cylinder,  which is filled with cast  alundrum. The pickup itself  and the protect ive cylin- 
der  a re  made of type ZhS6-K alloy. On the basis  of handbook data we assume that the thermal  diffusivity 
of the mater ia l  is a l inear  function of the tempera ture ,  a = a 0 + ~x [a 0 = 2 .40 .10  -6 m2/sec,  ~ = 4 .80 .10  -3 
m2/(sec .deg)], and we a s sume  cT = 3.4.106 J / ( m  3 -deg). The t empera tu re  of the end of the pickup is mea-  
sured  by a "semisynthet ic"  platinum surface  fi lm thermocouple,  like that descr ibed in [8]. The joint of 
the thermoeouple  --  the point at which the leads (made of wire) to the film and to the pickup mater ia l  a re  
connected --  is at the thermal ly  insulated end of the pickup, where the t e m p e r a t u r e  is a lso monitored.  

The mathemat ical  model, in cor respondence  with the d iscuss ion in [4], is obtained by parti t ioning the 
pickup into N = 7 regions or blocks (Fig. lb). This model is descr ibed by 

2a o o 2 
xx ----- _ ~,.( 2%d ~ _~_ ~cyd r x~ + - - ~  x~ ,-}- - ~  ~ (x; - -  x~) + ~ ? d  a/av' 

2ao , ~o ~d ~ ( .d--  2~  + x~), x2 = ~ x~-- d----7- x~ -r - -~  x. + - -  

�9 2 a  0 Oo ~ ,, o X2 X~ = ~ o  X~-I - -  d---- ~ x z + ~ -  x~+l + - - - ~  (x~-I--2x~ + i+I), (13) 

�9 ~ ao x ~  • 2 
X., - -  X, d ~ 7 ~ - ~ -  (x  6 - -  x~). 

In wri t ing Eqs.  (13) we assumed  that in the heat t r ans fe r  f rom block i to biock j the thermal  diffusiv- 
ity is that corresponding to the average  block t empera tu res ;  i . e . ,  ai_ j = a 0 + x[(x i + xj)/2]. 

In this case the observat ion vec tor  Yk is a sca lar ,  given by 

h ~ -  X l h  ~ y  IY'Jlh" 
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We supplement the state vector  X(r) of the sys t em with the vec tor  of quantities which a re  to be de- 
t e rmined:  

Working f rom the assumed constancy of the heating conditions at the end of the pickup (tav = const, 
a = const), we supplement Eqs:  {13) with the two equations 

(atav~ = 0 and ~ = 0. 

Accordingly,  in this ease we find the equation of the expanded sys tem in form (7), where R(r) (~) 

-- (9 x 1) is the expanded state vector ,  f is a nine-dimensional  nonlinear vec tor  function, and H ; I10 . . .  01 
- -  (1 x 9) is the observat ion matr ix .  

The expanded state vector  R (r) is to be identified through sequential es t imates  on the basis  of the 
a lgor i thm descr ibed  above. 

Figure  2 shows the resul ts  of a prac t ica l  identification of a and tme through the use of the KaIman- 
fi l ter  a lgor i thm (8)-(12). As the initial values we specify the accura te  values of the state vector  X010 of 
the sys tem,  working f rom the essent ial ly  uniform initial t empera tu re  distr ibution which prevai ls  over the 
the rmal  pickup [xl = x2 = . .  �9 = x7 = x(0)]. We assume the following combinations of a rb i t r a r i ly  selected 
values of the unknowns a and tree:  1) a = 720 W / m  2, tme = 1273~ 2) 110, 573; 3) 110, 2273; 4) 110, 
1273; 5) 720, 573; and severa l  other combinations.  In all cases  the identification procedure  converges  
within ~2% of cer ta in  values of the quantities to be identified. These  values a re  then adooted as the actual 
values:  a = 355 W / m  2 and tree = 1010~ 

Figure  2 shows the behavior  of the es t imates  ~klk and t*avkl k as they approach their  s teady-s ta te  
(actual) values; this behavior  charac te r i zes  the identification p roces s .  

Direc t  control  measurements  of tme ca r r i ed  out with a C h r o m e l - A l u m e l  thermocouple 0.1 mm in 
d iameter  show that the flow tempera tu re  var ies  f rom 993 to 1038~ depending on the distance f rom the 
end of the pickup. Since it is some average  of the flow t empera tu re  over the thickness which is identified, 
the resu l t s  were judged favorable.  

We have thus shown that the theory of optimal filtering, es t imates ,  and identification can be used to 
obtain optimal es t imates  of measured  thermal  p roper t i es .  As an example we repor ted  the prac t ica l  appli- 
cation of this p rocedure  for determining the t empera tu re  of a gas flow and for  determining the h e a t - t r a n s -  
fer coefficient along the sur face  of a pickup (a wall). 

T 
~7, sec 

Sk+1,k 
F ( r ) - -  (N•  
G(T)--  (NXp) 

V(~')  - -  (p x 1)  

fl and f 
H(T)-- (rX N)  

R (~-) 

Xk+lbk+ ~ and Rk+ ~ Ik+l 

Rk +1 ]k 
Kk+l 
P k + l l k + l  
Pk+ l ik  
G, J / (kg-deg)  and 
~, k g / m  3 

N O T A T I O N  

is the t ransposed vector  or matr ix;  
is the t ime step; 
is the t r ans fe r  mat r ix  of the sys tem;  
is the feedback matr ix;  
is the input-agent matr ix;  

is the input-agent vector ;  
a re  the nonlinear vec tor  functions; 
is the observat ion matrix;  

is the expanded state vector ;  
is the unit matr ix;  

a re  the es t imates  of the state vec tor  and expanded state vector  [the double sub- 
scr ip t  is used to give the t ime for which the est imate  is made (the f i rs t  subscript)  
and the observat ion t ime (the second)]; 

is the predict ion of the expanded state vector  to the t ime k + 1; 
is the weight mat r ix  of the f i l ter;  
is the covar iance mat r ix  of the e r r o r s  of the est imate;  
is the eovariance mat r ix  of the e r r o r s  of the prediction; 

a re  the specific heat capaci ty and density of the mate r i a l .  
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